By Topic

Efficient calculation of lattice sums for free-space periodic Green's function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yasumoto, K. ; Dept. of Comput. Sci. & Commun. Eng., Kyushu Univ., Fukuoka, Japan ; Yoshitomi, K.

An efficient method to calculate the lattice sums is presented for a one-dimensional (1-D) periodic array of line sources. The method is based on the recurrence relations for Hankel functions and the Fourier integral representation of the zeroth-order Hankel function. The lattice sums of arbitrary high order are then expressed by an integral of elementary functions, which is easily computed using a simple scheme of numerical integration. The calculated lattice sums are used to evaluate the free-space periodic Green's function. The numerical results show that the proposed method provides a highly accurate evaluation of the Green's function with far less computation time, even when the observation point is located near the plane of the array

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:47 ,  Issue: 6 )