By Topic

On the computational aspects of Gibbs-Markov random field modeling of missing-data in image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Krishnan, D. ; Sch. of Appl. Sci., Nanyang Technol. Univ., Singapore ; Chong, M.N. ; Kalra, S.

Gibbs-Markov random field (GMRF) modeling has been shown to be a robust method in the detection of missing-data in image sequences for a video restoration application. However, the maximum a posteriori probability (MAP) estimation of the GMRF model requires computationally expensive optimization algorithms in order to achieve an optimal solution. The continuous relaxation labeling (RL) is explored in this paper as an efficient approach for solving the optimization problem. The conversion of the original combinatorial optimization into a continuous RL formulation is presented. The performance of the RL formulation is analyzed and compared with that of other optimization methods such as stochastic simulated annealing, iterated conditional modes, and mean field annealing. The results show that RL holds out promise as an optimization algorithm for problems in image sequence processing

Published in:

Image Processing, IEEE Transactions on  (Volume:8 ,  Issue: 8 )