By Topic

Block truncation coding using neural network-based vector quantization for image compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Angelakis, C. ; Telecommun. Syst. Inst. of Crete, Greece ; Maragakis, G.A. ; Stavroulakis, P.

A new method is introduced by which a block truncation coder (BTC) is cascaded with a neural network-based vector quantizer (VQ). The proposed coder is very attractive for real time image transmission due to its simplicity and performance. It preserves important characteristics of the image, while cascading the BTC coder with a VQ results in high compression ratios of about 0.5 bpp without significantly increasing the coding time, due to fast coding look-up tables of the VQs. Additional advantages are fast codebook design and reduction of the codebook size required for a given reconstructed image quality

Published in:

Global Telecommunications Conference, 1998. GLOBECOM 1998. The Bridge to Global Integration. IEEE  (Volume:2 )

Date of Conference:

1998