By Topic

Influence of leaky surface acoustic wave velocity of glass substrates on frequency variation of ZnO/glass SAW filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kadota, M. ; Murata Manuf. Co. Ltd., Kyoto, Japan ; Kitamura, T.

During the manufacture of ZnO/glass surface acoustic wave (SAW) filters, two kinds of problems sometimes arise. One is that the average frequency of the SAW filters changes greatly depending on the production lot of glass sheets. The other is that SAW filters made from the same production lot of glass sheets have largely separated double peaks in the frequency distribution. Previously, it had been considered that the frequency variation of ZnO/glass SAW filters depended on such factors as the ZnO film thickness and its elastic quality. The authors focused on the glass substrates as the cause of this variation and measured the leaky SAW (LSAW) velocity on the glass substrates using an ultrasonic microscope to clarify the mechanism. As a result, it was clarified that the LSAW velocities on the glass substrates showed a large variation within and between production lots of glass sheets, and the frequency of ZnO/glass SAW filters largely depended on the LSAW velocity on glass substrates. Moreover, the authors clarified the cause of the difference in the LSAW velocity between glass substrates and were able to reduce the variation of the LSAW velocity.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:46 ,  Issue: 4 )