By Topic

Performance of CdZnTe geometrically weighted semiconductor Frisch grid radiation detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. S. McGregor ; Dept. of Nucl. Eng. & Radiol. Sci., Michigan Univ., MI, USA ; R. A. Rojeski

Semiconductor Frisch grid radiation detectors have been manufactured and tested with encouraging results. Resolution enhancement occurs as a result of combining the geometric weighting effect, the “small pixel” effect and the Frisch grid effect. The devices are operated at ambient temperature without any pulse shape correction, rejection and compensation techniques. The new devices are manufactured from CdZnTe and do not require any cooling for operation. The geometrically weighted detectors have only one signal output to a standard commercially available Ortec 142A preamplifier. The detectors operate with simple commercially available NIM electronics, hence the device design can be coupled to any typical NIM system without the need for special electronic instruments or circuits. Geometrically weighted detectors that are 1 cubic centimeter in volume were fabricated from “counter grade” material, yet have shown room temperature energy resolution of 7.5% FWHM (at 29°C) for 57Co 122 keV gamma rays and 2.68% FWHM (at 23°C) for 137Cs 662 keV gamma rays

Published in:

IEEE Transactions on Nuclear Science  (Volume:46 ,  Issue: 3 )