By Topic

Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
G. L. Li ; Dept. of Electr. & Comput. Eng., California Univ., San Diego, La Jolla, CA, USA ; C. K. Sun ; S. A. Pappert ; W. X. Chen
more authors

Theoretical analysis and numerical calculations are presented for ultrahigh-speed (>50 GHz) traveling-wave electroabsorption modulators (TW-EAM's), including effects of velocity mismatch, impedance mismatch, and microwave attenuation. A quasi-static equivalent circuit model is used to examine the TW-EAM microwave properties, including the effect of photocurrent. Due to the optical propagation loss of the waveguide, the TW-EAM waveguide length for maximum RF link gain is currently limited to 200-300 μm. The discussion indicates that the carrier transit time in the intrinsic layer may not severely limit the TW-EAM bandwidth. Three TW-EAM design approaches are discussed: low-impedance matching; reducing the waveguide capacitance; and distributing the modulation region

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:47 ,  Issue: 7 )