Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

An efficient design method of microwave oscillator circuits for minimum phase noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)

In this paper, we describe a newly developed design method of high-Q microwave oscillator circuits leading to the minimum phase noise for a given transistor and resonator. The key point of the method is the maximization of the energy stored in the resonator and its transfer to the controlling input voltage port of the transistor. The proposed method has been applied to two experimental oscillators setups with pseudomorphic high electron-mobility transistors (PHEMTs). A state of-the art phase noise of -50 dBc at 10-Hz offset from carrier with a 1/f3 slope has been measured at room temperature with a 9.2 GHz oscillator. The efficiency of this design method and its ease of use represent, in our opinion, a real breakthrough in the field of low noise transistor oscillator circuit design

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:47 ,  Issue: 7 )