Cart (Loading....) | Create Account
Close category search window
 

A model for predicting the power delay profile characteristics inside a room

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Holloway, C.L. ; Inst. of Telecommun. Scis., Dept. of Commerce, Boulder, CO, USA ; Cotton, M.G. ; McKenna, P.

Multipath effects in indoor wireless communication systems exhibit a characteristic power delay profile (PDP) and can be a detriment to the system's performance. We present a simplified model for calculating the decay rate of the PDP for propagation within rooms. This simplified model provides a time-efficient means of predicting system performance. Predictions of this in-room PDP model are compared to results obtained from a finite-difference time-domain (FDTD) model. Additionally, comparisons of the IPDP model to measured data are presented. The RMS delay spread is the second central moment of the PDP of a propagation channel and is a measure of the communication link degradation due to multipath. We also show results of the estimated RMS delay spread from this model and show comparisons to the measured data. This IPDP model can be used to investigate the effects of variable room size and properties of the surfaces (or walls) on the decay characteristics of the PDP

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:48 ,  Issue: 4 )

Date of Publication:

Jul 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.