By Topic

Robust nonlinear motion control for AUVs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Serrani ; Dept. of Syst. Sci. & Math., Washington Univ., St. Louis, MO, USA ; G. Conte

We show how an efficient nonlinear controller for a general model of autonomous underwater vehicles (AUVs) dynamics, with uncertainties and external disturbances, can be designed by means of Lyapunov techniques. The control task we consider consists of tracking a given reference trajectory. As part of the design strategy, both model uncertainties and external disturbances physically corresponding to the effect of an underwater current are represented as a bounded perturbation of a nominal model of the vehicle dynamics

Published in:

IEEE Robotics & Automation Magazine  (Volume:6 ,  Issue: 2 )