By Topic

Teletraffic analysis and mobility modeling of PCS networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuguang Fang ; Dept. of Electr. & Comput. Eng., New Jersey Inst. of Technol., Newark, NJ, USA ; Chlamtac, I.

Channel holding time is of primary importance in teletraffic analysis of PCS networks. This quantity depends on user's mobility which can be characterized by the cell residence time. We show that when the cell residence time is not exponentially distributed, the channel holding time is not exponentially distributed either, a fact also confirmed by available field data. In order to capture the essence of PCS network behaviour, including the characterization of channel holding time, a correct mobility model is therefore necessary. The new model must be good enough to fit field data, while at the same time resulting in a tractable queueing system. We propose a new mobility model, called the hyper-Erlang distribution model, which is consistent with these requirements. Under the new realistic operational assumption of this model, in which the cell residence time is generally distributed, we derive analytical results for the channel holding time distribution, which are readily applicable to the hyper-Erlang distribution models. Using the derived analytical results we demonstrate how the distribution of the cell residence time affects the channel holding time distribution. The results presented in this paper can provide guidelines for field data processing in PCS network design and performance evaluation.

Published in:

Communications, IEEE Transactions on  (Volume:47 ,  Issue: 7 )