By Topic

General optical all-pass filter structures for dispersion control in WDM systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lenz, G. ; Bell Labs., Lucent Technol., Murray Hill, NJ, USA ; Madsen, C.K.

All-pass filters (APFs) are devices that allow phase correction or equalization without introducing any amplitude distortion. An optical implementation of such devices is very attractive since they can be used for dispersion compensation. In contrast to other dispersion control devices, optical APFs can correct any order of dispersion. This can be achieved by careful design of multistage APFs to approximate a target phase profile. However, large dispersion is usually narrow band or requires many filter stages. These performance tradeoffs and the general phase properties of optical APFs are reviewed and clarified in the first part of this paper. In the second part, a general design methodology of optical APFs is introduced. We show that any all-pass structure may be constructed from simple N-port devices (such as directional couplers or Mach-Zehnder interferometers) with N-1 outputs fed back to any of the N-1 inputs. The feedback paths may contain delays or further APFs (recursive design). This set of design rules allows for constructing complex all-pass filters of any number of stages starting with very simple elements. We use this technique to demonstrate a number of optical all-pass structures that may be implemented in planar waveguide or using thin-film filter technology

Published in:

Lightwave Technology, Journal of  (Volume:17 ,  Issue: 7 )