By Topic

Design of gain-clamped doped-fiber amplifiers for optimal dynamic performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bononi, A. ; Dipt. di Ingegneria dell''Inf., Parma Univ., Italy ; Barbieri, L.

This paper provides a detailed analysis of gain-clamped doped-fiber amplifiers and design guidelines in a wavelength division multiplexed (WDM) networking environment. A simple dynamic model of the doped-fiber amplifier allows us to derive explicit expressions for the small-signal response, which help identify and optimize the most critical parameters for best dynamic performance. The most important parameter is the pump power, which should be chosen 1-2 dB's above its required open-loop value, with all channels present, for the required signal gain. In an all-optical networking scenario with input power per channel as high as -3 dBm the required pump power may well exceed 20 dBm. Thus optimization of other parameters such as laser wavelength and loop loss are important. For best dynamic performance either the loop loss should be extremely small, implying a very large laser flux, or the laser gain variation in response to a perturbation should be large. Accordingly, the laser wavelength should be placed either close to the unity-gain region of the clamped gain profile, or at its peak. Finally, the small signal model for a chain of clamped amplifiers is provided, and it is shown that long chains are vulnerable to low-frequency input signal perturbations

Published in:

Lightwave Technology, Journal of  (Volume:17 ,  Issue: 7 )