Cart (Loading....) | Create Account
Close category search window

Effects of nonlinear dispersion in EDFA's on optical communication systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Reichel, S. ; Dept. of Electr. Eng., Kaiserslautern Univ., Germany ; Zengerle, R.

The signal-induced change of the refractive index in an erbium-doped fiber amplifier (EDFA) causes a phase modulation imposed on a signal when passing the EDFA. In this paper, we apply our extended EDFA model on an optical communication system. The model includes this phase modulation, by including the nonlinear dispersion in an EDFA, and the spontaneous emission noise. The influence of these effects on an optical communication system is examined by means of Q-factor and eye diagram. We assume an intensity modulated-direct detection (IM-DD) system operating at 193 THz (1552.5 nm) with a bit rate of 10 Gb/s in the anomalous dispersion regime and a total fiber length of 500 km. The fibers are assumed to be dispersion shifted ones, EDFAs are used to compensate for the fiber loss. By numerical simulation we obtain results for the influence of the phase modulation (nonlinear dispersion) due to the signal induced change of the refractive index in an EDFA and the spontaneous emission noise at different input peak powers. Neglecting the signal-induced change of the refractive index strongly underestimates the Q-factor in the anomalous dispersion regime. Therefore it should be included for reliable system simulations. This can be done with the numerical model presented here

Published in:

Lightwave Technology, Journal of  (Volume:17 ,  Issue: 7 )

Date of Publication:

Jul 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.