By Topic

Discrete-time backpropagation for training synaptic delay-based artificial neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Duro, R.J. ; Dept. de Ingenieria Ind., Coruna Univ., Spain ; Reyes, J.S.

The aim of the paper is to endow a well-known structure for processing time-dependent information, synaptic delay-based ANNs, with a reliable and easy to implement algorithm suitable for training temporal decision processes. In fact, we extend the backpropagation algorithm to discrete-time feedforward networks that include adaptable internal time delays in the synapses. The structure of the network is similar to the one presented by Day and Davenport (1993), that is, in addition to the weights modeling the transmission capabilities of the synaptic connections, we model their length by means of a parameter that indicates the delay a discrete-event suffers when going from the origin neuron to the target neuron through a synaptic connection. Like the weights, these delays are also trainable, and a training algorithm can be derived that is almost as simple as the backpropagation algorithm, and which is really an extension of it. We present examples of the application of these networks and algorithm to the prediction of time series and to the recognition of patterns in electrocardiographic signals. In the first case, we employ the temporal reasoning characteristics of these networks for the prediction of future values in a benchmark example of a time series: the one governed by the Mackey-Glass chaotic equation. In the second case, we provide a real life example. The problem consists in identifying different types of beats through two levels of temporal processing, one relating the morphological features which make up the beat in time and another one that relates the positions of beats in time, that is, considers rhythm characteristics of the ECG signal. In order to do this, the network receives the signal sequentially, no windowing, segmentation, or thresholding are applied

Published in:

Neural Networks, IEEE Transactions on  (Volume:10 ,  Issue: 4 )