By Topic

Characterization of power electronics system interconnect parasitics using time domain reflectometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huibin Zhu ; Bradley Dept. of Electr. Eng., Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA ; A. R. Hefner ; J. -S. Lai

The significance of interconnect parasitics of power electronics systems is their effects on power converters' electromagnetic interference (EMI)-related performances, such as voltage/current spikes, dv/dt, di/dt, conducted/radiated EMI noise, etc. In this paper, a time domain reflectometry (TDR) measurement-based modeling technique is described for characterizing interconnect parasitics in switching power converters. Experiments are conducted on power components of a prototype high-power inverter, including insulated gate bipolar transistor (IGBT) modules, busbar and bulk capacitors. It is shown that the interconnect inductance of the IGBT module can be extracted completely using TDR. It is also shown that the busbar equivalent circuit can be modeled as transmission line segments or L-C filter sections, and the bulk capacitor contains a significant equivalent series interconnect inductance

Published in:

IEEE Transactions on Power Electronics  (Volume:14 ,  Issue: 4 )