By Topic

Identification of assembly process states using polyhedral convex cones

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mosemann, H. ; Inst. for Robotics & Process Control, Tech. Univ. Braunschweig, Germany ; Raue, A. ; Wahl, F.

The execution of automatically generated assembly plans by robots is one of the key technologies of modern and flexible manufacturing. During the execution of assembly sequences the robot comes into contact with the environment. Since there are positional and geometrical uncertainties from object representation, robot motion, and sensor information, compliance is used typically to prevent excessive contact forces. The contact forces and the resulting torques provide information about the contact geometry which is used to guide the assembly operation. We present a fast algorithm to identify assembly process states considering static friction under uniform gravity. This identification of assembly process states enables a robot to select and modify its motion strategies adequately according to the state. We give a symbolic representation of contact states and analyze the static properties of assemblies at each contact state by using the theory of polyhedral convex cones

Published in:

Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on  (Volume:4 )

Date of Conference: