Cart (Loading....) | Create Account
Close category search window
 

The GRD chip: genetic reconfiguration of DSPs for neural network processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Murakawa, M. ; Div. of Comput. Sci., Electrotech. Lab., Ibaraki, Japan ; Yoshizawa, S. ; Kajitani, I. ; Xin Yao
more authors

This paper describes the GRD (Genetic Reconfiguration of DSPs) chip, which is evolvable hardware designed for neural network applications. The GRD chip is a building block for the configuration of a scalable neural network hardware system. Both the topology and the hidden layer node functions of a neural network mapped on the GRD chips are dynamically reconfigured using a genetic algorithm (GA). Thus, the most desirable network topology and choice of node functions (e.g., Gaussian or sigmoid function) for a given application can be determined adaptively. This approach is particularly suited to applications requiring the ability to cope with time-varying problems and real-time constraints. The GRD chip consists of a 100 MHz 32-bit RISC processor and 15 33 MHz 16-bit DSPs connected in a binary-tree network. The RISC processor is the NEC V830 which executes mainly the GA. According to chromosomes obtained by the GA, DSP functions and the interconnection among them are dynamically reconfigured. The GRD chip does not need a host machine for this reconfiguration. This is desirable for embedded systems in practical industrial applications. Simulation results on chaotic time series prediction are two orders of magnitude faster than on a Sun Ultra 2

Published in:

Computers, IEEE Transactions on  (Volume:48 ,  Issue: 6 )

Date of Publication:

Jun 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.