Cart (Loading....) | Create Account
Close category search window

Circumventing dynamic modeling: evaluation of the error-state Kalman filter applied to mobile robot localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Roumeliotis, S.I. ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Sukhatme, G.S. ; Bekey, George A.

The mobile robot localization problem is treated as a two-stage iterative estimation process. The attitude is estimated first and is then available for position estimation. The indirect (error state) form of the Kalman filter is developed for attitude estimation when applying gyro modeling. The main benefit of this choice is that combined dynamic modeling of the mobile robot and its interaction with the environment is avoided. The filter optimally combines the attitude rate information from the gyro and the absolute orientation measurements. The proposed implementation is independent of the structure of the vehicle or the morphology of the ground. The method can easily be transferred to another mobile platform provided it carries an equivalent set of sensors. The 2D case is studied in detail first. Results of extending the approach to the 3D case are presented. In both cases the results demonstrate the efficacy of the proposed method

Published in:

Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on  (Volume:2 )

Date of Conference:


Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.