Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Experimental and theoretical investigation of nonvolatile memory data-retention

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

Data retention is one of the main issues affecting nonvolatile memory reliability due to the critical single-cell internal dimension scaling down. In this paper an extensive investigation of floating-gate memory charge retention is presented. We argue that the retention time, namely log(tR), varies linearly with temperature T rather than with 1/T as commonly assumed, yielding a drastic reduction in the extrapolated time-to-failure. The experimental evidence of the new “T Model” is proved by means of several experimental results. The physical consistency of the “T Model” is shown to reside in the temperature exponential behavior of the Fowler-Nordheim current. Indeed, a good physical modeling of both experimental current-temperature (J-T) and memory retention characteristics is achieved. Finally, it is shown that this new “T Model” reconciles seemingly controversial activation energy data from the literature

Published in:

Electron Devices, IEEE Transactions on  (Volume:46 ,  Issue: 7 )