Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

A 60-GHz fT super self-aligned selectively grown SiGe-base (SSSB) bipolar transistor with trench isolation fabricated on SOI substrate and its application to 20-Gb/s optical transmitter ICs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Sato, F. ; ULSI Device Dev. Lab., NEC Corp., Kanagawa, Japan ; Hashimoto, T. ; Tezuka, H. ; Soda, M.
more authors

A 60-GHz cutoff frequency (fT) super self-aligned selectively grown SiGe-base (SSSB) bipolar technology is developed. It is applied to 20-Gb/s optical fiber transmitter ICs. Self-aligned bipolar transistors mutually isolated by using a BPSG-filled trench were fabricated on a bond-and-etchback silicon-on-insulator (SOI) substrate to reduce the collector-substrate capacitance CCS. The SiGe base was prepared by selective epitaxial growth (SEG) technology. A 0.4-μm wide emitter was used to reduce the junction capacitances. The maximum cutoff frequency fT and the maximum frequency of oscillation fmax were 60 and 51 GHz, respectively. By using this technology, Si-ICs for an optical transmitter system were made, such as a selector (a multiplexer without input and output retiming D-type flip-flops (D-F/Fs)), a multiplier, and a D-F/F. An internal high-speed clock buffer circuit achieves stable operation under a single clock input condition in the selector and the multiplier ICs. Their stable operation was confirmed up to 20 Gb/s. The selector IC for data multiplexing operates at over 30 Gb/s

Published in:

Electron Devices, IEEE Transactions on  (Volume:46 ,  Issue: 7 )