By Topic

Buffer management schemes for supporting TCP in gigabit routers with per-flow queueing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Suter, B. ; Lucent Technol., Bell Labs., Holmdel, NJ, USA ; Lakshman, T.V. ; Stiliadis, D. ; Choudhury, A.

There has been much interest in using active queue management in routers in order to protect users from connections that are not very responsive to congestion notification. An Internet draft recommends schemes based on random early detection for achieving these goals, to the extent that it is possible, in a system without “per-flow” state. However, a “stateless” system with first-in/first-out (FIFO) queueing is very much handicapped in the degree to which flow isolation and fairness can be achieved. Starting with the observation that a “stateless” system is but one extreme in a spectrum of design choices and that per-flow queueing for a large number of flows is possible, we present active queue management mechanisms that are tailored to provide a high degree of isolation and fairness for TCP connections in a gigabit IP router using per-flow queueing. We show that IP flow state in a router can be bounded if the scheduling discipline used has finite memory, and we investigate the performance implications of different buffer management strategies in such a system. We show that merely using per-flow scheduling is not sufficient to achieve effective isolation and fairness, and it must be combined with appropriate buffer management strategies

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:17 ,  Issue: 6 )