Cart (Loading....) | Create Account
Close category search window
 

A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Morched, A. ; Ontario Hydro, Toronto, Ont., Canada ; Gustavsen, B. ; Tartibi, M.

This paper presents a transmission line model for the simulation of electromagnetic transients in power systems. The model can be applied to both overhead lines and cables, even in the presence of a strongly frequency dependent transformation matrix and widely different modal time delays. This has been achieved through a phase domain formulation where the modal characteristics have been utilized in the approximation for the propagation matrix. High computational efficiency is achieved by grouping modes with nearly equal velocities and by columnwise realization of the matrices for propagation and characteristic admittance

Published in:

Power Delivery, IEEE Transactions on  (Volume:14 ,  Issue: 3 )

Date of Publication:

Jul 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.