By Topic

A new algorithm for N-dimensional Hilbert scanning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kamata, S. ; Dept. of Intelligent Syst., Kyushu Univ., Fukuoka, Japan ; Eason, R.O. ; Bandou, Y.

There have been many applications of the Hilbert curve, such as image processing, image compression, computer hologram, etc. The Hilbert curve is a one-to-one mapping between N-dimensional space and one-dimensional (l-D) space which preserves point neighborhoods as much as possible. There are several algorithms for N-dimensional Hilbert scanning, such as the Butz algorithm and the Quinqueton algorithm. The Butz algorithm is a mapping function using several bit operations such as shifting, exclusive OR, etc. On the other hand, the Quinqueton algorithm computes all addresses of this curve using recursive functions, but takes time to compute a one to-one mapping correspondence. Both algorithms are complex to compute and both are difficult to implement in hardware. In this paper, we propose a new, simple, nonrecursive algorithm for N-dimensional Hilbert scanning using look-up tables. The merit of our algorithm is that the computation is fast and the implementation is much easier than previous ones

Published in:

Image Processing, IEEE Transactions on  (Volume:8 ,  Issue: 7 )