By Topic

Performance evaluation of a new optimistic concurrency control algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. Addess ; Dept. of Comput. Sci., Ben-Gurion Univ., Beer Sheva, Israel ; E. Gudes ; D. Tal ; N. Rishe

A modification of the classic Kung-Robinson timestamp-based concurrency control algorithm is described. The algorithm is based on two innovative techniques: query killing notes and weak serializability of transactions. In particular, it prefers long transactions over short queries and thus reduces considerably the number of transaction rollbacks required. In order to test the validity and evaluate the performance of the proposed algorithm, a simulation program was written and run using a realistic set of transactions. The simulation was performed using Flat Concurrent Prolog (FCP). The advantages of FCP for specifying and implementing parallel algorithms include its refined granularity of parallelism, its declarativeness and conciseness, and its powerful communication and synchronization primitives. Results of algorithm performance are presented

Published in:

Databases, Parallel Architectures and Their Applications,. PARBASE-90, International Conference on

Date of Conference:

7-9 Mar 1990