By Topic

Quantization issues for soft-decision decoding of linear block codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
W. -H. J. Chen ; Dept. of Electr. Eng., Washington Univ., Seattle, WA, USA ; M. P. C. Fossorier ; Shu Lin

In general, a channel quantizer for a communication system subject to additive white Gaussian noise (AWGN) is designed based on the cutoff rate. This criterion is good if the scheme considered performs close to the theoretical performance corresponding to the cutoff rate, as for error control systems employing convolutional codes. However, it is no longer true for systems using low complexity suboptimum decoding algorithms for block codes. We illustrate this point and present three examples for which we compare the optimum quantizer and the quantizer based on the cutoff rate for Q=4 quantization levels

Published in:

IEEE Transactions on Communications  (Volume:47 ,  Issue: 6 )