By Topic

An omnifont open-vocabulary OCR system for English and Arabic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
I. Bazzi ; BBN Syst. & Technol. Corp., Cambridge, MA, USA ; R. Schwartz ; J. Makhoul

We present an omnifont, unlimited-vocabulary OCR system for English and Arabic. The system is based on hidden Markov models (HMM), an approach that has proven to be very successful in the area of automatic speech recognition. We focus on two aspects of the OCR system. First, we address the issue of how to perform OCR on omnifont and multi-style data, such as plain and italic, without the need to have a separate model for each style. The amount of training data from each style, which is used to train a single model, becomes an important issue in the face of the conditional independence assumption inherent in the use of HMMs. We demonstrate mathematically and empirically how to allocate training data among the different styles to alleviate this problem. Second, we show how to use a word-based HMM system to perform character recognition with unlimited vocabulary. The method includes the use of a trigram language model on character sequences. Using all these techniques, we have achieved character error rates of 1.1 percent on data from the University of Washington English Document Image Database and 3.3 percent on data from the DARPA Arabic OCR Corpus

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:21 ,  Issue: 6 )