Cart (Loading....) | Create Account
Close category search window
 

Static test compaction for synchronous sequential circuits based on vector restoration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pomeranz, I. ; Dept. of Electr. & Comput. Eng., Iowa Univ., Iowa City, IA, USA ; Reddy, S.M. ; Ruifeng Guo

We propose a new static test compaction procedure for synchronous sequential circuits. The procedure belongs to the class of procedures that omit test vectors from a given test sequence in order to reduce its length without reducing the fault coverage. The previous procedure that achieved high levels of compaction using this approach attempted to omit test vectors from a given test sequence one at a time or in subsequences of consecutive vectors. The omission of each vector or subsequence required extensive simulation to determine the effects of each omission on the fault coverage. The procedure proposed here first omits (almost) all the test vectors from the sequence, and then restores some of them as necessary to achieve the required fault coverage. The decision to restore a vector requires simulation of a single fault. Thus, the overall computational effort of this procedure is relatively low. The loss of compaction compared to the scheme that omits the vectors one at a time or in subsequences is small in most cases. Techniques to speed up the restoration process are also investigated, including consideration of several faults in parallel during restoration, and the use of a parallel fault simulator. Experimental results are presented to demonstrate the effectiveness of vector restoration as a static compaction technique

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:18 ,  Issue: 7 )

Date of Publication:

Jul 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.