By Topic

Clustering with a genetically optimized approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hall, L.O. ; Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA ; Ozyurt, I.B. ; Bezdek, J.C.

Describes a genetically guided approach to optimizing the hard (J 1) and fuzzy (Jm) c-means functionals used in cluster analysis. Our experiments show that a genetic algorithm (GA) can ameliorate the difficulty of choosing an initialization for the c-means clustering algorithms. Experiments use six data sets, including the Iris data, magnetic resonance, and color images. The genetic algorithm approach is generally able to find the lowest known Jm value or a Jm associated with a partition very similar to that associated with the lowest Jm value. On data sets with several local extrema, the GA approach always avoids the less desirable solutions. Degenerate partitions are always avoided by the GA approach, which provides an effective method for optimizing clustering models whose objective function can be represented in terms of cluster centers. A series random initializations of fuzzy/hard c-means, where the partition associated with the lowest Jm value is chosen, can produce an equivalent solution to the genetic guided clustering approach given the same amount of processor time in some domains

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:3 ,  Issue: 2 )