By Topic

Convex-set-based fuzzy clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Il Hong Suh ; Dept. of Electron. Eng., Hanyang Univ., Ansan, South Korea ; Jae-Hyun Kim ; Chung-Hoon Rhee, F.

Prototype-based methods are commonly used in cluster analysis and the results may be highly dependent on the prototype used. We propose a two-level fuzzy clustering method that involves adaptively expanding and merging convex polytopes, where the convex polytopes are considered as a “flexible” prototype. Therefore, the dependency on the use of a specified prototype can be eliminated. Also, the proposed method makes it possible to effectively represent an arbitrarily distributed data set without a priori knowledge of the number of clusters in the data set. In the first level of our proposed method, each cluster is represented by a convex polytope which is described by its set of vertices. Specifically, nonlinear membership functions are utilized to determine whether an input pattern creates a new cluster or whether an existing cluster should be modified. In the second level, the expandable clusters that are selected by an intercluster distance measure are merged to improve clustering efficiency and to reduce the order dependency of the incoming input patterns. Several experimental results are given to show the validity of our method

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:7 ,  Issue: 3 )