By Topic

Redundant filterbank precoders and equalizers. II. Blind channel estimation, synchronization, and direct equalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Scaglione ; Infocom Dept., Rome Univ., Italy ; G. B. Giannakis ; S. Barbarossa

For pt.I see ibid., vol.47, no.7, p.1988-2006 (1999). Transmitter redundancy introduced using finite impulse response (FIR) filterbank precoders offers a unifying framework for single- and multiuser transmissions. With minimal rate reduction, FIR filterbank transmitters with trailing zeros allow for perfect (in the absence of noise) equalization of FIR channels with FIR zero-forcing equalizer filterbanks, irrespective of the input color and the channel zero locations. Exploiting this simple form of redundancy, blind channel estimators, block synchronizers, and direct self-recovering equalizing filterbanks are derived in this paper. The resulting algorithms are computationally simple, require small data sizes, can be implemented online, and remain consistent (after appropriate modifications), even at low SNR colored noise. Simulations illustrate applications to blind equalization of downlink CDMA transmissions, multicarrier modulations through channels with deep fades, and superior performance relative to CMA and existing output diversity techniques relying on multiple antennas and fractional sampling

Published in:

IEEE Transactions on Signal Processing  (Volume:47 ,  Issue: 7 )