By Topic

Modeling of CMOS digital-to-analog converters for telecommunication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wikner, J.J. ; MERC, Linkoping Univ., Sweden ; Nianxiang Tan

This paper gives an overview of some of the effects caused by circuit mismatch and parasitics in binary weighted digital-to-analog converters (DACs), and, as a special case, a current-steering CMOS converter. Matlab is used as a behavior-level simulator. In telecommunications applications, the frequency-domain parameters are of the greatest importance. Therefore, the characterization of the device and its performance is determined by frequency parameters such as the signal-to-noise ratio, spurious-free dynamic range, multitone power ratio, etc. In this paper, we show how these frequency-domain parameters are affected when mismatch errors and finite output impedance are applied to a current-steering CMOS DAC. We discuss how static performance is affected when changing the size of the errors and fundamental circuit parameters. The impact of dynamic errors such as glitches, slewing, and bit skew is discussed. Measurement results from 14-bit DACs are also shown to illustrate the correlation with the modeling

Published in:

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on  (Volume:46 ,  Issue: 5 )