By Topic

Semi-infinite linear programming: a unified approach to digital filter design with time- and frequency-domain specifications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Nordebo ; Dept. of Signal Process., Karlskrona Univ., Ronneby, Sweden ; Zhuquan Zang

Using the recently developed semi-infinite linear programming techniques and Caratheodory's dimensionality theory, we present a unified approach to digital filter design with time and/or frequency-domain specifications. Through systematic analysis and detailed numerical design examples, we demonstrate that the proposed approach exhibits several salient features compared to traditional methods: 1) using the unified approach, complex responses can be handled conveniently without resorting to discretization; 2) time domain constraints can be included easily; and 3) any filter structure, recursive or nonrecursive, can be employed, provided that the frequency response can be represented by a finite-complex basis. More importantly, the solution procedure is based on the numerically efficient simplex extension algorithms. As numerical examples, a discrete-time Laguerre network is used in a frequency-domain design with additional group-delay specifications, and in a ℋ-optimal envelope constrained-filter design problem. Finally, a finite impulse response phase equalizer is designed with additional frequency domain ℋ robustness constraints

Published in:

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing  (Volume:46 ,  Issue: 6 )