Cart (Loading....) | Create Account
Close category search window

Numerical modeling of a fiber-optic phase modulator using piezoelectric polymer coating

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bhatti, A. ; Dept. of Electr. & Electron. Eng., Manchester Metropolitan Univ., UK ; Al-Raweshidy, H.S. ; Murtaza, G.

A new approach in analysing an all-fiber phase modulator using a commercially available finite-element software package is presented. A single-mode fiber coated with a radially poled piezoelectric unoriented vinylidene fluoride (73 mol%)/trifluoroethylene (27 mol%) copolymer was successfully modeled using a two-dimensional axi-symmetric approach. The response of the phase modulator was determined over a wide frequency range, from 10 Hz to 50 MHz. Results showed a phase shift of 0.155 rad/V/m in the low-frequency (axially unconstrained) region, and 0.045 rad/V/m in the high-frequency (axially constrained) region. An excellent agreement exists between the simulation results and experimental measurements.

Published in:

Photonics Technology Letters, IEEE  (Volume:11 ,  Issue: 7 )

Date of Publication:

July 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.