By Topic

Cache-only memory architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dahlgren, F. ; Dept. of Res. & Design, Ericsson Mobile Commun., Lund, Sweden ; Torrellas, J.

The shared memory concept makes it easier to write parallel programs, but tuning the application to reduce the impact of frequent long latency memory accesses still requires substantial programmer effort. Researchers have proposed using compilers, operating systems, or architectures to improve performance by allocating data close to the processors that use it. The Cache-Only Memory Architecture (COMA) increases the chances of data being available locally because the hardware transparently replicates the data and migrates it to the memory module of the node that is currently accessing it. Each memory module acts as a huge cache memory in which each block has a tag with the address and the state. The authors explain the functionality, architecture, performance, and complexity of COMA systems. They also outline different COMA designs, compare COMA to traditional nonuniform memory access (NUMA) systems, and describe proposed improvements in NUMA systems that target the same performance obstacles as COMA

Published in:

Computer  (Volume:32 ,  Issue: 6 )