By Topic

Order statistics approach for determining the number of sources using an array of sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fishler, E. ; Dept. of Electr. Eng.-Syst., Tel Aviv Univ., Israel ; Messer, H.

A new approach for estimating the number of radiating, not fully correlated sources using the data received by an array of sensors is presented. The common approach is to apply information theoretic criteria, such as the minimum description length (MDL) or the Akaike information criterion (AIC), on the received data. Alternatively, we suggest to apply these criteria on the ordered eigenvalues of the sample data covariance matrix. While asymptotically, as the number of snapshots tends to infinity, the two approaches converge, we demonstrate that for any finite number of samples there exist physical conditions for which the proposed approach outperforms the traditional one. These cases are associated with spatially close sources, or with highly correlated sources, or with the case of sources with very different signal-to-noise ratio (SNR).

Published in:

Signal Processing Letters, IEEE  (Volume:6 ,  Issue: 7 )