By Topic

SNR estimation of speech signals using subbands and fourth-order statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nemer, E. ; Nortel Networks, Verdun, Que., Canada ; Goubran, R. ; Mahmoud, S.

This article addresses the problem of instantaneous signal-to-noise ratio (SNR) estimation during speech activity for the purpose of improving the performance of speech enhancement algorithms. It is shown that the kurtosis of noisy speech may be used to individually estimate speech and noise energies when speech is divided into narrow bands. Based on this concept, a novel method is proposed to continuously estimate the SNR across the frequency bands without the need for a speech detector. The derivations are based on a sinusoidal model for speech and a Gaussian assumption about the noise. Experimental results using recorded speech and noise show that the model and the derivations are valid, though not entirely accurate across the whole spectrum; it is also found that many noise types encountered in mobile telephony are not far from Gaussianity as far as higher statistics are concerned, making this scheme quite effective.

Published in:

Signal Processing Letters, IEEE  (Volume:6 ,  Issue: 7 )