By Topic

Performance of an adaptive rate modem using quasi-analytic simulation techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. A. Wickert ; Pericle Commun. Co., Colorado Springs, CO, USA ; P. Hofstetter

The symbol error probability (SEP) of a digital signal processor implemented π/M M-ary differentially coherent phase-shift keying (MDPSK) modem, using quasi-analytical (QA) simulation techniques, is the subject of this investigation. We study M values of 4, 8, 16, 32, and 64 for use in a fast adaptive data rate mobile radio communication system. The proposed modulation scheme π/M-MDPSK, is a generalization of π/4 differentially coherent quadrature phase-shift keying, which is used in the North American time-division multiple-access wireless standard. A QA simulation approach is developed so that real system impairments can be studied without having to resort to lengthy Monte Carlo simulation. In particular, it is found that implementation losses, most notable at M=32 and 64, which result from practical transmit and receive filtering, and symbol timing error, can be largely overcome by using a fixed equalization filter and increased accuracy of symbol timing recovery. We focus on an additive white Gaussian noise channel since, in a fast adaptive rate system, the Doppler spread mobile channel is approximately Gaussian on short time intervals. However, the quasi-analytic technique developed here is directly extendable to a fast Rayleigh fading channel. Specifically, we find that for M=64, the inclusion of a fixed seven-tap zero forcing equalizer at the matched filter output, decreases the SEP degradation at Pe=10-4 from 7.5 dB down to 0.24 dB. The symbol timing error using a finite-precision interpolator is held to within 1/64 symbol period

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:47 ,  Issue: 6 )