By Topic

Global modeling of spatially distributed microwave and millimeter-wave systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

17 Author(s)
M. B. Steer ; Dept. of Electron. & Electr. Eng., Leeds Univ., UK ; J. F. Harvey ; J. W. Mink ; M. N. Abdulla
more authors

Microwave and millimeter-wave systems have generally been developed from a circuit perspective with the effect of the electromagnetic (EM) environment modeled using lumped elements or N-port scattering parameters. The recent development of the local reference node concept coupled with steady-state and transient analyses using state variables allows the incorporation of unrestrained EM modeling of microwave structures in a circuit simulator. A strategy implementing global modeling of electrically large microwave systems using the circuit abstraction is presented. This is applied to the modeling of a quasi-optical power-combining amplifier

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:47 ,  Issue: 6 )