By Topic

Optical fiber current sensors in high electric field environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rose, A.H. ; Optoelectron. Div., Nat. Inst. of Stand. & Technol., Boulder, CO, USA ; Etzel, S.M. ; Rochford, K.B.

This paper analyzes the response of optical fiber current sensors that are subjected to high electric fields, such as fields encountered in gas-insulated systems. This paper shows that through the electrooptic (EO) Kerr effect, these fields can cause harmonic distortion of the measured ac current waveform. This harmonic distortion was confirmed experimentally. Also, this paper shows that it is possible to simultaneously measure both current and voltage waveforms and the phase between them using this effect. To minimize the electrooptic Kerr effect, optical fiber current sensors must be screened from high-electric fields

Published in:

Lightwave Technology, Journal of  (Volume:17 ,  Issue: 6 )