Cart (Loading....) | Create Account
Close category search window

Growth and decay of the electrooptic effect in thermally poled B/Ge codoped fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Janos, M. ; Uniphase Fiber Components, North Ryde, NSW, Australia ; Wei Xu ; Wong, D. ; Inglis, H.
more authors

Using an in situ technique for measuring the induced electrooptic effect during poling, we have studied the growth and decay characteristics of thermally poled twin hole B/Ge codoped fiber devices. The decay characteristic measured at elevated temperatures were best fitted with a stretched exponential function, indicating a distribution of relaxation times is present in this material. Using the Arrhenius relation, we calculate an activation energy for the stability of the electrooptic effect with this material and poling geometry in the range from 25 to 28 kJ/mol (0.28-0.31 eV), corresponding to a lifetime at 298 K of approximately 45 days

Published in:

Lightwave Technology, Journal of  (Volume:17 ,  Issue: 6 )

Date of Publication:

Jun 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.