By Topic

Design and optimization, steady-state and dynamic analysis of synchronous reluctance motors controlled by voltage-fed converters with nonlinear controllers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
S. E. Lyshevski ; Dept. of Electr. Eng., Purdue Univ., West Lafayette, IN, USA ; A. Nazarov ; A. El-Antably ; C. Yokomoto
more authors

This paper presents innovative results to improve the design and manufacture of high-performance synchronous reluctance machines. These results have been obtained from our research in analyzing and synthesizing advanced control algorithms to promote the competitiveness of three-phase synchronous reluctance machines in electric drives in comparison with permanent-magnet synchronous motors and induction machines. These results have direct application in the design and manufacture of electric- and hybrid-electric drivetrains for light-, medium-, and heavy-duty vehicles. First, we report on the dynamic optimization of medium duty synchronous reluctance machines described by nonlinear differential equations. Second, we describe a new design optimization method, based upon nonlinear electromagnetic analysis, to improve steady-state performance and to enhance the operating envelope. Highly efficient, high-speed synchronous reluctance motors, ranging from 10 kW to 100 kW, were manufactured and tested. The design methods ensure cost-effective production of a new generation of state-of-the-art synchronous reluctance motors. This paper develops a nonlinear model of synchronous reluctance motors that incorporates saturation effects. Kirchhoff's and Newton's laws are used to derive the models. The application of Park's transformation results in a set of differential equations in the rotor reference frame; the q-, d- and zero-axis voltage and current quantities are used in analysis, modeling and design. Robust controllers are developed to guarantee closed-loop system stability and attain the disturbance rejection

Published in:

Electric Machines and Drives, 1999. International Conference IEMD '99

Date of Conference:

May 1999