Cart (Loading....) | Create Account
Close category search window
 

Validation of an optical flow method for tag displacement estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dougherty, L. ; Dept. of Radiol., Pennsylvania Univ., Philadelphia, PA, USA ; Asmuth, J.C. ; Blom, A.S. ; Axel, L.
more authors

Presents a validation study of an optical-flow method for the rapid estimation of myocardial displacement in magnetic resonance tagged cardiac images. This registration and change visualization (RCV) software uses a hierarchical estimation technique to compute the flow field that describes the warping of an image of one cardiac phase into alignment with the next. This method overcomes the requirement of constant pixel intensity in standard optical-flow methods by preprocessing the input images to reduce any intensity bias which results from the reduction in stripe contrast throughout the cardiac cycle. To validate the method, SPAMM-tagged images were acquired of a silicon gel phantom with simulated rotational motion. The pixel displacement was estimated with the RCV method and the error in pixel tracking was <4% 1000 ms after application of the tags, and after 30° of rotation. An additional study was performed using a SPAMM-tagged multiphase slice of a canine left ventricle. The true displacement was determined using a previously validated active contour model (snakes). The error between methods was 6.7% at end systole. The RCV method has the advantage of tracking all pixels in the image in a substantially shorter period than the snakes method.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:18 ,  Issue: 4 )

Date of Publication:

April 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.