By Topic

A novel efficient algorithm for scattering from a complex BOR using mixed finite elements and cylindrical PML

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Greenwood, A.D. ; Center for Comput. Electromagn., Illinois Univ., Urbana, IL, USA ; Jian-Ming Jin

An efficient finite-element method (FEM) is developed to compute scattering from a complex body of revolution (BOR). The BOR is composed of a perfect conductor and impedance surfaces and arbitrary inhomogeneous materials. The method uses edge-based vector basis functions to expand the transverse field components and node-based scalar basis functions to expand the angular component. The use of vector basis functions eliminates the problem of spurious solutions suffered by other three component FEM formulations. The FEM mesh is truncated with a perfectly matched layer (PML) in cylindrical coordinates. The use of PML in cylindrical coordinates avoids the wasted computation which results from a spherical mesh boundary with an elongated scatterer. The FEM equations are solved by ordering the unknowns with a reverse Cuthill-McKee algorithm and applying a banded-matrix solution algorithm. The method is capable of handling large, realistic radar targets, and good agreement with measured results is achieved for benchmark targets

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:47 ,  Issue: 4 )