By Topic

Receiver array calibration using disparate sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We present a new array calibration procedure for over-the-horizon (OTH) radar, using disparate sources. Unlike previous array calibration methods, which require a specific type or class of sources for calibrating the array, the method we propose can use combinations of single-mode, multimode, and near-field sources; each source with either known or unknown DOAs (directions-of-arrival). Multidimensional MUSIC is exploited for time-invariant DOA sources, while single-snapshot techniques are used for sources that have time-varying DOAs. A nonlinear separable least-squares solution to the array calibration problem is used to estimate the array coupling matrix and sensor positions. Simulation results indicate that good estimates are obtained for the unknown parameters and further the array sidelobe levels and bearing errors are significantly reduced when these estimated parameters are used in array processing. The algorithm performance was also compared with the Cramer-Rao lower bound and found to be statistically efficient

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:47 ,  Issue: 3 )