By Topic

Adaptive nonlinear filters for narrow-band interference suppression in spread-spectrum CDMA systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krishnamurthy, V. ; Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic., Australia ; Logothetis, A.

This paper presents a novel nonlinear filter and parameter estimator for narrow band interference suppression in code division multiple access spread-spectrum systems. As in the article by Rusch and Poor (1994), the received sampled signal is modeled as the sum of the spread-spectrum signal (modeled as a finite state independently identically distributed (i.i.d.) process-here we generalize to a finite state Markov chain), narrow-band interference (modeled as a Gaussian autoregressive process), and observation noise (modeled as a zero-mean white Gaussian process). The proposed algorithm combines a recursive hidden Markov model (HMM) estimator, Kalman filter (KF), and the recursive expectation maximization algorithm. The nonlinear filtering techniques for narrow-band interference suppression presented in Rusch and Poor and our proposed HMM-KF algorithm have the same computational cost. Detailed simulation studies show that the HMM-KF algorithm outperforms the filtering techniques in Rusch and Poor. In particular, significant improvements in the bit error rate and signal-to-noise ratio (SNR) enhancement are obtained in low to medium SNR. Furthermore, in simulation studies we investigate the effect on the performance of the HMM-KF and the approximate conditional mean (ACM) filter in the paper by Rusch and Poor, when the observation noise variance is increased. As expected, the performance of the HMM-KF and ACM algorithms worsen with increasing observation noise and number of users. However, HMM-KF significantly outperforms ACM in medium to high observation noise

Published in:

Communications, IEEE Transactions on  (Volume:47 ,  Issue: 5 )