Cart (Loading....) | Create Account
Close category search window

Reduced complexity iterative decoding of low-density parity check codes based on belief propagation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fossorier, M.P.C. ; Dept. of Electr. Eng., Hawaii Univ., Honolulu, HI, USA ; Mihaljević, M. ; Imai, H.

Two simplified versions of the belief propagation algorithm for fast iterative decoding of low-density parity check codes on the additive white Gaussian noise channel are proposed. Both versions are implemented with real additions only, which greatly simplifies the decoding complexity of belief propagation in which products of probabilities have to be computed. Also, these two algorithms do not require any knowledge about the channel characteristics. Both algorithms yield a good performance-complexity trade-off and can be efficiently implemented in software as well as in hardware, with possibly quantized received values

Published in:

Communications, IEEE Transactions on  (Volume:47 ,  Issue: 5 )

Date of Publication:

May 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.