By Topic

Terrain navigation using Bayesian statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
N. Bergman ; Dept. of Autom. Control, Linkoping Univ., Sweden ; L. Ljung ; F. Gustafsson

The performance of terrain-aided navigation of aircraft depends on the size of the terrain gradient in the area. The point-mass filter (PMF) described in this work yields an approximate Bayesian solution that is well suited for the unstructured nonlinear estimation problem in terrain navigation. It recursively propagates a density function of the aircraft position. The shape of the point-mass density reflects the estimate quality; this information is crucial in navigation applications, where estimates from different sources often are fused in a central filter. Monte Carlo simulations show that the approximation can reach the optimal performance, and realistic simulations show that the navigation performance is very high compared with other algorithms and that the point-mass filter solves the recursive estimation problem for all the types of terrain covered in the test. The main advantages of the PMF is that it works for many kinds of nonlinearities and many kinds of noise and prior distributions. The mesh support and resolution are automatically adjusted and controlled using a few intuitive design parameters. The main disadvantage is that it cannot solve estimation problems of very high dimension since the computational complexity of the algorithm increases drastically with the dimension of the state space. The implementation used in this work shows real-time performance for 2D and in some cases 3D models, but higher state dimensions are usually intractable

Published in:

IEEE Control Systems  (Volume:19 ,  Issue: 3 )