By Topic

Significance-linked connected component analysis for very low bit-rate wavelet video coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. Vass ; Dept. of Comput. Eng. & Comput. Sci., Missouri Univ., Columbia, MO, USA ; Bing-Bing Chai ; K. Palaniappan ; Xinhua Zhuang

A novel hybrid wavelet video coding algorithm termed video significance-linked connected component analysis (VSLCCA) is developed for very low bit-rate applications. In the proposed VSLCCA codec, first, fine-tuned motion estimation based on the H.263 Recommendation is developed to reduce temporal redundancy, and exhaustive overlapped block motion compensation is utilized to ensure coherency in motion compensated error frames. Second, the wavelet transform is applied to each coherent motion compensated error frame to attain global energy compaction. Third, significant fields of wavelet-transformed error frames are organized and represented as significance-linked connected components so that both the within-subband clustering and the cross-scale dependency are exploited. Last, the horizontal and vertical components of motion vectors are encoded separately using adaptive arithmetic coding while significant wavelet coefficients are encoded in bit-plane order by using high order Markov source modeling and adaptive arithmetic coding. Experimental results on eight standard MPEG-4 test sequences show that for intraframe coding, on average the proposed codec exceeds H.263 and ZTE (zero-tree entropy) in peak signal-to-noise ratio by as much as 2.07 and 1.38 dB at 28 kbit/s, respectively. For entire sequence coding, VSLCCA is superior to H.263 and ZTE by 0.35 and 0.71 dB on average, respectively

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:9 ,  Issue: 4 )