By Topic

Microfabrication of high-temperature silicon devices using wafer bonding and deep reactive ion etching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Mehra ; Dept. of Aeronaut. & Astronaut., MIT, Cambridge, MA, USA ; A. A. Ayon ; I. A. Waitz ; M. A. Schmidt

As part of an effort to develop a micro gas turbine engine capable of providing 10-50 W of electrical power in a package less than one cubic centimeter in volume, we report the fabrication and testing of the first hydrogen combustor micromachined from silicon. Measuring 0.066 cm 3 in volume, and complete with a fuel manifold and set of fuel injector holes, the fabrication of the device was largely enabled by the use of deep reactive ion etching (DRIE) and aligned silicon wafer bonding. The 150-W microcombustor has a power density in excess of 2000 MW/m3 and has been successfully demonstrated to provide turbine inlet temperatures up to 1800 K. After 15 h of experimental tests, the combustor maintained its mechanical integrity and did not exhibit any visible damage. Combined with the results of a materials oxidation study, these tests are used to demonstrate the satisfactory performance of silicon in the harsh oxidizing environment of a combustion chamber

Published in:

Journal of Microelectromechanical Systems  (Volume:8 ,  Issue: 2 )