By Topic

Analysis, design, and resonant current control for a 1-MHz high-power-factor rectifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mollov, S.V. ; Sch. of Electron. & Electr. Eng., Birmingham Univ., UK ; Forsyth, A.J.

Fundamental frequency analysis is used to examine the LCC series-parallel loaded resonant converter with a capacitive output filter when operating as a high-power-factor rectifier. Optimum values are identified for the Q factor and voltage conversion ratio such that zero-voltage switching is just maintained, while minimizing the resonant circuit conduction losses. A simple resonant current control loop is shown to provide an effective mechanism of active control, achieving a high-quality input current waveform over a wide load range. Results are presented from a 1 MHz 160 W prototype

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:46 ,  Issue: 3 )